ANÁLISE DAS CONDIÇÕES DE INSTALAÇÃO QUE PROPORCIONAM UM MAIOR DESEMPENHO DA PLACA FOTOVOLTAICA

Artigo apresentado ao curso de graduação em Engenharia Civil da Universidade Católica de Brasília, como requisito parcial para a obtenção de Título de Bacharel em Engenharia Civil.

Orientador:
Dr. Prof. Álvaro Bittencourt Henrique Silva

Brasília
2017
Artigo de autoria de Jeize Nunes Alves Martins e Loiane Rosa, intitulado “ANÁLISE DAS CONDIÇÕES DE INSTALAÇÃO QUE PROPORCIONAM UM MAIOR DESEMPENHO DA PLACA FOTOVOLTAICA”, apresentado como requisito parcial para obtenção do grau de Bacharel em Engenharia Civil da Universidade Católica de Brasília, em (09/03/2017), defendido e aprovado pela banca examinadora abaixo assinada:

Prof. Dr. Álvaro Bittencourt Henrique Silva
Orientador
Curso de Engenharia Civil – UCB

Prof. Esp. Carlos Roberto Augusto
Examinador

Curso de Engenharia Civil – UCB
Brasília
2017
LISTA DE FIGURAS

Figura 1 – Componentes ... 7
Figura 2 - Material para confecção do regulador de tensão. .. 7
Figura 3 – Regulador de tensão ... 8
Figura 4 - Placa Fotovoltaica ... 9
Figura 5 - Placa Fotovoltaica ... 10
Figura 6 - realizando o carregamento do celular. .. 11
Figura 7 - Esquemático do Fluxo solar na atmosfera terrestre .. 12
Figura 8 - Radiação Global Média .. 13
Figura 9 - Formação de Energia Elétrica Através de Células Fotovoltaicas 14

LISTA DE TABELA

Tabela 1 - Matriz de energia Elétrica (Annel.gov.br) ... 5

LISTA DE GRÁFICO

Gráfico 1 - Tempo gasto para carregar o celular ... 16
SUMÁRIO

RESUMO ... 1
1. INTRODUÇÃO .. 2
2. JUSTIFICATIVA .. 3
3. OBJETIVO .. 4
 3.1. OBJETIVO GERAL .. 4
 3.2. OBJETIVOS ESPECÍFICOS .. 4
4. MATERIAIS E MÉTODOS ... 5
 4.1. MATERIAIS .. 7
 4.2. MÉTODOS .. 9
5. REVISÃO BIBLIOGRÁFICA ... 11
 5.1. ENERGIA SOLAR .. 11
6. DETERMINAÇÃO DA EFICIÊNCIA DOS SISTEMAS FOTOVOLTAICOS 15
7. CONCLUSÃO E CONSIDERAÇÕES FINAIS .. 15
REFERÊNCIAS BIBLIOGRÁFICAS ... 18
ANÁLISE DAS CONDIÇÕES DE INSTALAÇÃO QUE PROPORCIONAM UM MAIOR DESEMPENHO DA PLACA FOTOVOLTAICA

JEIZE NUNES ALVES MARTINS & LOIANE ROSA

RESUMO

O aumento da demanda no consumo de energia elétrica está intimamente ligado ao desenvolvimento industrial, bem como às necessidades de redução dos gases de efeito estufa e redução da conta de energia elétrica. O consumo de energia elétrica mundial cresce a cada dia, no consumo industrial, comercial e privado atrelado a demanda de energia de novas tecnologias.

A geração de energia no Brasil é o resultado da produção de cerca de 560 usinas e subestações e 1079 linhas de transmissão que formam a rede de operação o ONS – Operador Nacional do Sistema Elétrico.

A capacidade instalada dessas usinas alcançou a potência total de 152.192.480 KW. Dessa época para cá, adotam-se medidas de economia, buscam-se soluções através de geração de termoelétricas, porém o consumo é sempre crescente, apesar das altas tarifas aplicadas. Em função da demanda crescente procuramos estabelecer uma fonte de geração de energia no campus da UCB (Universidade Católica de Brasília) para carregamento de aparelhos celulares no próprio campus como alternativa sustentável à energia elétrica utilizada sem aumento de custos fixos.

Utilizando uma pequena placa fotovoltaica de 5,5 x 6,5 cm, 6v de tensão e 580mA sob a iluminação de lâmpadas incandescentes de 100 w foi possível recarregar um aparelho antigo Samsung modelo GT E1207 de 3,7 Volts e 800 mA necessitando de aproximadamente 460 minutos (7 horas e 40 minutos), mostrando que sua utilização não é adequada para smartphones.

Palavras-chaves: placa fotovoltaica, energia elétrica, carregador.
1. **INTRODUÇÃO**

A energia solar incidente em nosso planeta, sempre foi alvo de pesquisas, é considerada uma energia pura e inesgotável, o que fez com que o homem, através de crescentes tecnologias, pudesse captá-la de alguma forma e armazená-la. Os raios solares não transferem somente o calor a sistemas térmicos, eles possuem comprimentos de ondas diferenciados, com o qual se pode obter a energia elétrica.

O sistema de transformação de energia solar em elétrica, através de placas fotovoltaicas, é uma forma instantânea de adquirir energia elétrica através do sol. As placas fotovoltaicas se utilizam da radiação solar como fonte de energia natural, que se tem como a mais limpa e abundante, transformando-a em energia elétrica.

Atualmente, os elementos fotovoltaicos existentes, têm sua capacidade de transformação de energia solar em elétrica, bem abaixo do que se espera, isto é fato característico, não existindo ainda tecnologias que possam melhorar sua capacidade. Com isso, propõem-se adequar de maneira diferente os elementos de captação solar, de forma que os raios solares incidam perpendicularmente nas placas, durante o dia todo. Obtendo, com isso, uma constante potência máxima das células fotovoltaicas. Para que os sistemas de captação de energia solar utilizando placas fotovoltaicas permaneçam sempre perpendiculares aos raios do sol, é imprescindível o uso de elementos que controlem automaticamente a sua movimentação, com intuito de rastrear o sol.

O emprego de sistema fotovoltaico justifica-se pela geração de energia limpa e renovável e no próprio local de demanda, fato que evita novas instalações, além de colaborar positivamente tanto com a geração quanto com a distribuição de energia elétrica e também na garantia de qualidade ao meio ambiente.

Com o intuito de aproveitar toda essa radiação solar em abundância, surgiu como objetivo desse trabalho buscar as condições ideais de instalação de pontos para verificar as condições de maior eficiência da placa fotovoltaica para a criação de um Hot Point (ponto para recarregar os celulares) no campus da Universidade Católica de Brasília, e têm-se por objetivo específico buscar fazer a comparação do tempo de recarga utilizando a placa fotovoltaica em relação ao tempo de recarga utilizando uma tomada de energia de 220v.

O Brasil apresenta um grande crescimento populacional, para suprir o alto consumo de energia são necessárias hidroelétricas e geradores a base de combustíveis fósseis. Essa geração
de energia está com crescimento limitado na última década e, portanto, a geração com uso de energias alternativas renováveis é por si só uma justificativa da ampliação da matriz energética.

Os climas tropicais e semi-tropicais em nosso país favorecem a implantação de sistemas fotovoltaicos, bem como de geradores por sistemas eólicos que complementam a matriz energética existente no Brasil. Explorando a insolação e pontos de ventos constantes como forma de ampliar a geração de energia.

Para dimensionamento do sistema fotovoltaico é preciso que se faça o levantamento de cargas, ou seja, o total de potência necessária para suprimento da energia elétrica consumida ou parcialmente como uma alternativa de redução do consumo.

- O Projeto de geração por sistema fotovoltaico deve ser constituído de:
 a) Placa fotovoltaica;
 b) Cabo;
 c) Suporte;

A organização do presente trabalho consiste em:

Escolha do local a ser implantado o projeto buscando as condições ideais de posicionamento e instalação, a fim de se encontrar as condições de maior eficiência da placa em questão.

Fazer levantamento de cargas do gerador

Desenvolvimento de um projeto do sistema elétrico especial.

2. JUSTIFICATIVA

A energia é uma das principais preocupações do homem na atualidade, pois o consumo é crescente não só devido aos novos equipamentos, mas ao próprio consumo da população no Brasil e no mundo. O custo da energia aqui se baseia nas formas convencionais (hidrelétricas, usinas térmicas, nucleares e etc.).

O uso cada vez maior tem pressionado a atual matriz energética que está suscetível aos problemas das mudanças climáticas e tornando-se viáveis novas pesquisas de fontes geradoras frente ao aumento da demanda da mesma. Dessa maneira, a implantação do sistema de geração através de placas fotovoltaicas se mostra extremamente viável no contexto de pequenas indústrias e também de comércios e outras aplicações, tanto no aspecto de disponibilidade da energia, quanto no aspecto de custo.
A Universidade Católica de Brasília optou por alugar geradores elétricos a diesel como sua principal fonte de energia, reduzindo custos e evitando possíveis quedas de luz. Por ser um sistema caro e extremamente poluente, me motivei a buscar alternativas. Atualmente a placa fotovoltaica é o que se tem de mais moderno, eficiente e sustentável no mercado. Entender melhor esse sistema e encontrar formas de inseri-lo a matriz energética da Católica seria muito positivo.

3. OBJETIVO

3.1. OBJETIVO GERAL

A Universidade Católica de Brasília possui 16.967 alunos segundo o site da própria instituição. É um hábito dos alunos utilizar as tomadas da sala durante a aula para carregar seus aparelhos celulares, nesse contexto propomos a utilização de placas fotovoltaicas para suprir essa demanda. Esse trabalho propôe-se a verificar as condições de maior eficiência da placa fotovoltaica para a criação de um Hot Point (ponto para recarregar de celulares) no campus.

3.2. OBJETIVOS ESPECÍFICOS

- Analisar a viabilidade da utilização de placa fotovoltaica para o carregamento da bateria de aparelhos celulares.
- Verificar as condições de instalação ideais para a otimização do funcionamento da placa fotovoltaica.
4. MATERIAIS E MÉTODOS

Para efeito comparativo na forma de geração de energia elétrica no Brasil a ANEEL destaca que a matriz energética está distribuída conforme a tabela 1 abaixo.

<table>
<thead>
<tr>
<th>Fonte de energia</th>
<th>Potência associada (KW)</th>
<th>Situação</th>
</tr>
</thead>
<tbody>
<tr>
<td>168 empreendimento (s) de fonte Eólica</td>
<td>3.839.250</td>
<td>Construção não iniciada</td>
</tr>
<tr>
<td>163 empreendimento (s) de fonte Eólica</td>
<td>3.805.700</td>
<td>Construção</td>
</tr>
<tr>
<td>428 empreendimento (s) de fonte Eólica</td>
<td>10.463.743</td>
<td>Operação</td>
</tr>
<tr>
<td>73 empreendimento (s) de fonte Fotovoltaica</td>
<td>1.886.997</td>
<td>Construção não iniciada</td>
</tr>
<tr>
<td>38 empreendimento (s) de fonte Fotovoltaica</td>
<td>1.093.400</td>
<td>Construção</td>
</tr>
<tr>
<td>44 empreendimento (s) de fonte Fotovoltaica</td>
<td>23.761</td>
<td>Operação</td>
</tr>
<tr>
<td>176 empreendimento (s) de fonte Hidrelétrica</td>
<td>2.431.871</td>
<td>Construção não iniciada</td>
</tr>
<tr>
<td>38 empreendimento (s) de fonte Hidrelétrica</td>
<td>2.300.939</td>
<td>Construção</td>
</tr>
<tr>
<td>1263 empreendimento (s) de fonte Hidrelétrica</td>
<td>98.729.581</td>
<td>Operação</td>
</tr>
<tr>
<td>1 empreendimento (s) de fonte Maré</td>
<td>50</td>
<td>Construção não iniciada</td>
</tr>
</tbody>
</table>

Tabela 1 - Matriz de energia Elétrica (Anel.gov.br)

Resumo da Situação Atual dos Empreendimentos em 29/05/2017 fonte ANEEL.
129 empreendimento(s) de fonte Termelétrica 4.895.067 Construção não iniciada
33 empreendimento(s) de fonte Termelétrica 4.328.528 Construção
2927 empreendimento(s) de fonte Termelétrica 42.975.395 Operação

Investimentos Brasileiros das seguintes fontes de energia

<table>
<thead>
<tr>
<th>Fonte</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eólica</td>
<td>Utiliza a força dos ventos para acionar uma usina elétrica</td>
</tr>
<tr>
<td>Fotovoltaica</td>
<td>Utiliza a energia recebida diretamente do Sol</td>
</tr>
<tr>
<td>Hidrelétrica</td>
<td>Utiliza a energia hidráulica (dos rios) na geração de energia elétrica</td>
</tr>
<tr>
<td>Maré</td>
<td>Utiliza a energia obtida pela cinética das ondas do mar</td>
</tr>
<tr>
<td>Termelétrica</td>
<td>Utiliza a energia obtida pela combustão de combustível fóssil, biomassa ou pela energia térmica liberada em reações nucleares</td>
</tr>
</tbody>
</table>

Como a energia por hidroelétricas está no seu limite de saturação para grandes e médias unidades faz-se necessário a investigação de novas formas de geração de energia como é o caso da energia com uso de células fotovoltaicas são constituídas por um material semicondutor – o silício – ao qual são adicionadas substâncias de modo a criar um meio adequado a criação do efeito fotovoltaico, isto é, conversão direta da potência próxima à radiação solar em potência elétrica em corrente contínua.

Em um sistema isolado, o modo de funcionamento relaciona-se com a radiação disponível no mês com menos sol, pois é necessário assegurar o abastecimento durante todo o ano; em sistemas que operam com os coletores fotovoltaicos que podem ser constituídos de:

- Baterias de modo a garantir o abastecimento nos períodos em que o recurso é escasso ou não estão disponíveis; as baterias são carregadas quando o recurso disponível admite uma potência superior à potência de carga requerida.

- Regulador de carga é o aparelho que faz a gestão da carga para obter adequação com a radiação disponível e com a capacidade das baterias utilizadas.

- Inversor, permite converter as cargas alimentadas em corrente alternada com a utilização de um equipamento eletrônico que converte as tensões em CC em CA.

No nosso trabalho iniciado no Bloco M, que se localiza dentro da Universidade Católica de Brasília, a fim de aferir a melhor forma de aproveitamento de energia solar nas placas fotovoltaicas para o carregamento das baterias dos celulares se formou de acordo com o esquema exemplificado na figura 1.
4.1. Materiais
Os Sistemas fotovoltaicos (ALTENER, 2004) funcionam para várias aplicações, os equipamentos são constituídos de:
- As Célula fotovoltaica são dispositivos capazes de transformar energia solar em energia elétrica, umas sendo policristalinas (quadradas) e outros silícos cristalinos (discos) esses são os tipos mais comuns.
- Módulo geralmente é feito de alumínio, montado em quadro num subsistema de geração de energia ligado entre si, em paralelo e em série, formado por células fotovoltaicas encapsuladas, evitando eventuais impactos.
- Controlador de carga, ou seja, controla a tensão da bateria de armazenamento.
- Cabeamento entre componentes do sistema e de acesso ao celular (cabo USB).
- Voltímetro.

![Placa fotovoltaica](image)

Figura 4 - Placa Fotovoltaica

Fonte: Imagem Ali-Express

4.2. Métodos utilizados no experimento

Para o início da coleta de dados foi necessária a utilização de um tripé para ajuste da placa fotovoltaica em uma angulação em 16°, então realizamos o primeiro teste com multímetro e cabo USB para a verificação da tensão e amperagem de saída, obtivemos respectivamente 6V e 580 mA, uma corrente bem inferior ao 1A necessário para que fosse possível carregar um celular. Notou-se que havia uma irregularidade na tensão, o que nos levou a fazer a montagem de um regulador de tensão para uniformiza-la na saída da placa.

Esse regulador é um circuito que recebe uma tensão em corrente contínua na entrada e a reduz na saída, tornando-a estável.

Conforme a verificação do Data Sheet do fabricante o regulador 7805 pode receber na entrada uma tensão que pode variar de 6V até 18V, ele vai produzir na saída uma tensão de 5V estabilizada, valor adequado para carregar um smartphone.

Observamos que os valores coincidem com o do fabricante, a tensão inicial começa 1,8V, ao colocar ao sol observamos que o valor da tensão teve aumento significativo para 6,8V.
O presente trabalho conta com duas etapas, sendo a primeira uma revisão bibliográfica sobre energia solar, nesse ponto busca-se o esclarecimento da fonte energética fundamental para as placas fotovoltaicas, bem o melhor entendimento sobre irradiação solar e como essa é fundamental o para o funcionamento do sistema proposto.

Posteriormente foi utilizado uma placa fotovoltaica, tendo em vista a potência que a placa gera, sendo ela de 6V, com o objetivo de recarregar uma bateria para celular.

Muito embora a geração de energia por placas dissipe calor, um coletor híbrido tem eficiência menor que um coletor fotovoltaico. Essa diferença está ligada a energia refletida pela placa (Vries, 1998, Zondag, 2007).

Adota-se o sistema de conexão direta, ou seja, placa, conexões e bateria.

-Será colocado em um ponto da universidade.
- O multímetro registrara o DDP

Segundo Google Mapas, a localização exata do Campus Águas Claras da Universidade Católica de Brasília é a seguinte:
- Latitude: 24° 59’ - Sul;
- Longitude: 53° 26’ - Oeste;
- Altitude: 682 m
Figura 6 - realizando o carregamento do celular.

5. REVISÃO BIBLIOGRÁFICA

5.1. ENERGIA SOLAR

A maior fonte de energia do nosso planeta é o Sol. Toda essa energia é a responsável por aquecer a superfície terrestre. Entretanto, o formato da terra tem um impacto na uniformidade do aquecimento terrestre, resultando que os raios solares atinjam a região tropical quase perpendicularmente à superfície, o que não ocorre nos polos, onde a incidência é mais oblíqua. Esse fator de incidência torna a potência por área que incide no equador ser superior à dos polos (REBOITA, 2012). Assim que entra na atmosfera, a radiação solar sofre processos
físicos de espelhamento e absorção com a superfície e gases da atmosfera do planeta (PEREIRA, 2006), isso altera os valores relacionados ao fluxo de energia na superfície, logo não se pode considerar uma única incidência média para o Brasil.

O Brasil tem uma extensão latitudinal considerável, com ocupação em áreas equatoriais até latitudes médias e isso faz com que diferentes regimes climáticos afetem as várias regiões do país (REBOITA, 2012). Cerca de 30% da radiação que incide na parte superior da atmosfera é refletida pelas nuvens, os gases e particulados da atmosfera. O fluxo que penetra é absorvido produzindo aquecimento, e para manter o equilíbrio, a energia absorvida é posteriormente reemitida (PEREIRA, 2012). Conforme pode ser visto pela Figura 7 abaixo.

![Figura 7 - Esquemático do Fluxo solar na atmosfera terrestre](image)

Fonte: ATLAS BRASILEIRO DA ENERGIA SOLAR.

O material mais empregado na produção de células fotovoltaicas é o silício, acrescido de pequenas quantidades de outros materiais. O Brasil possui 90% dos recursos mundiais de silício mineral - material utilizado para fabricação de células fotovoltaicas (ABADE, 1996). As células fotovoltaicas trabalham segundo o princípio de que os fótons incidentes, colidindo com os átomos de certos materiais, provocam um deslocamento de elétrons, carregados negativamente. Se estes elétrons podem ser capturados antes de retornarem aos seus orbitais atômicos, podem ser aproveitados livres como corrente elétrica. As lacunas criadas quando os elétrons se deslocam, são cargas positivas, e conduzem a corrente elétrica (COMETTA, 1982).

O Atlas Brasileiro de Energia Solar utilizou dados coletados em estações da rede SONDA (Sistema de Organização Nacional de Dados Ambientais para o setor de energia) e dados
medidos em plataformas de coleta de dados -PCD para compilar os dados de radiação solar no território Brasileiro. A figura 8 abaixo mostra o resultado obtido para a radiação solar na região Centro-Oeste. O que se pode verificar na figura é que a região tem uma incidência solar inferior apenas à região Nordeste, tornando-a um dos melhores locais do Brasil para se possuir um sistema fotovoltaico.

O potencial solar do Centro-Oeste é tão alto, que se compararmos com a região de maior incidência da Alemanha, país onde os sistemas fotovoltaicos são amplamente utilizados, obtemos um valor 69% superior para a região Centro-Oeste (AgentürfürErneuerbareEnergien, 2010).

Esses dados são essenciais no estudo de disponibilidade da fonte e serão utilizados para os cálculos da eficiência da nossa placa, nos possibilitando calcular sua eficiência.

![Figura 8 - Radiação Global Média](Image)
A energia solar está presente em todo o mundo, com diferentes intensidades de radiação em cada região do planeta. O Brasil tem o privilégio de ser um país de clima tropical, com 92% do território localizado acima do trópico de Capricórnio, o que caracteriza o país como sendo um país de grande potencial de energia solar. Toda energia solar é emitida sob a forma de irradiação luminosa: 41% no espectro visível, 52% no infravermelho e 7% no ultravioleta próximo. A terra capta um décimo de bilionésimo dessa energia, ou seja, um pouco mais de 15 bilhões de MW. A parte diretamente utilizável, é a radiação luminosa ao nível do solo, cuja potência varia entre 0 e 1.100 W/m² de superfície horizontal, conforme a latitude (MARTINS, 1996).

A na casa solar eficiente, localizada no Centro de Pesquisas de Energia Elétrica (CEPEL, 2005), na Ilha do Fundão, Rio de Janeiro, já pesquisa um sistema de rastreamento da irradiação solar. A estrutura do sistema de rastreamento é puramente mecânico e passivo, que funciona com base no deslocamento de um gás entre dois braços ocos. O movimento da estrutura é de tal forma que a incidência do sol é sempre perpendicular ao plano dos painéis fotovoltaicos, situação mais favorável para o aproveitamento da energia. O aumento de aproveitamento teórico de energia deste tipo de estrutura é da ordem de 20% se comparada com a montagem fixa de painéis (CEPEL-CRESES, 2005).

Figura 9 - Formação de Energia Elétrica Através de Células Fotovoltaicas

Fonte: (CEPEL – CRESES, 2005)
6. DETERMINAÇÃO DA EFICIÊNCIA DOS SISTEMAS FOTOVOLTAICOS

A eficiência de um módulo fotovoltaico é definida pela relação entre a potência gerada pelo módulo e a irradiação incidente sobre o módulo. Segundo TREBLE (1980), a eficiência do módulo pode ser obtida pela equação:

\[
\eta = \frac{(I_{mp} \times V_{mp})}{(I_c \times A)} \times 100
\]

- \(I_c \) = Irradiância solar (W/m\(^2\))
- \(A \) = Área útil do módulo (m\(^2\))
- \(I_{mp} \) = Corrente máxima de pico (A)
- \(V_{mp} \) = Tensão máxima de pico (V)

7. RESULTADOS E DISCUSSÕES

Após desenvolvermos um regulador de tensão conseguimos obter 5 volts na saída, valor padrão para o carregamento de aparelhos celulares. Com isso alcançamos resultados satisfatórios, porém muito inferiores aos desejados, sendo possível apenas carregar a bateria de um celular menos sofisticado. Foi escolhido para os testes um aparelho antigo da Samsung, modelo GT E1207 de 3,7 Volts e 800 mA.
8. CONCLUSÃO E CONSIDERAÇÕES FINAIS

Depois de realizados os ensaios foram possíveis constatar que devido à baixa amperagem da placa fotovoltaica ligada aos celulares, mesmo com a instalação de um circuito regulador de tensão, não foi possível obter corrente suficiente para carregar a bateria de smartphones ou outros aparelhos celulares que necessitassem de cargas maiores. Pois durante o carregamento desses aparelhos notou-se que seus consumos eram superiores à carga fornecida pela placa. Amperagem que a placa fotovoltaica fornecia era de meio Ampére (A) e os aparelhos mais modernos necessitam de pelo menos um Ampére (A) para serem recarregados.

Sabendo que a placa fornece aproximadamente 600 mA, seria necessário realizar experimentos com duas placas de mesma voltagem, instaladas em paralelo, pois as correntes somariam chegando a uma energia suficiente para que o carregamento desses celulares fosse possível.

Também poderia ser utilizada uma placa de maior amperagem, pois a eficiência seria mais significativa no circuito regulador de tensão.

Entretanto foram obtidos resultados satisfatórios com aparelhos celulares mais antigos, sendo possível carrega-los com o uso de apenas uma placa. Os resultados mostraram que à medida que a bateria se recarrega torna-se mais rápido o seu ganho de carga.
ABSTRACT

The increase in the demand for electricity consumption is closely linked to industrial development, as well as the need to reduce greenhouse gases and reduce the electricity bill. The world's electricity consumption grows daily, in industrial, commercial and private consumption, coupled with the energy demand of new technologies.

The generation of energy in Brazil is the result of the production of about 560 plants and substations and 1079 transmission lines that form the ONS network - National Operator of the Electric System. The installed capacity of these plants reached a total power of 152,192,480 KW. From that time until now, economic measures have been adopted, solutions are being sought through the generation of thermoelectric power plants, but consumption is always increasing, despite the high tariffs applied. Due to increasing demand, we seek to establish a source of energy generation on the campus of UCB (Universidade Católica de Brasília) to charge cellular devices in the campus itself as a sustainable alternative to the electricity used without increasing fixed costs.

Using a small 15x10 cm, 6v voltage and 580mA photovoltaic panel under the lighting of 100w incandescent bulbs, it was possible to recharge an old Samsung model E1207, 3.7 Volts and 800 mA, requiring approximately 460 minutes (7 hours and 40 minutes), showing that its use is not suitable for smartphones.

Keywords: photovoltaic board, electric power, charger.

LISTA DE ABBREVIATURAS E SIGLAS
<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampére</td>
</tr>
<tr>
<td>ANEEL</td>
<td>Agência Nacional de Energia Elétrica</td>
</tr>
<tr>
<td>CA</td>
<td>Corrente Alternada</td>
</tr>
<tr>
<td>CCC</td>
<td>Corrente Contínua</td>
</tr>
<tr>
<td>H</td>
<td>Hora</td>
</tr>
<tr>
<td>KWH</td>
<td>Kilowatt-Hora</td>
</tr>
<tr>
<td>KW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>mA</td>
<td>Miliampere</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>μf</td>
<td>Microfarad</td>
</tr>
<tr>
<td>NOS</td>
<td>Operador Nacional do Sistema</td>
</tr>
<tr>
<td>PCD</td>
<td>Plataforma de coleta dados</td>
</tr>
<tr>
<td>SONDA</td>
<td>Sistema de organização nacional de dados ambientais para o setor de energia</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
</tbody>
</table>

REFERÊNCIAS BIBLIOGRÁFICAS
ANEEL. Resolução Normativa Nº 482, de 17 de abril de 2012.

ATLAS BRASILEIRO DA ENERGIA SOLAR. SÃO JOSÉ DOS CAMPOS: INPE, 60P. 2006.

MARTINS, A. Conhecendo o sol Folha de São Paulo, 15 set. 1996.
